Introduction - Combining Mechanism and Machine Learning
2025-10-12
| Time | Session |
|---|---|
| 09:00 - 09:20 | Welcome and Introduction |
| 09:20 - 10:30 | NLME modeling in Pumas |
| 10:30 - 10:45 | ☕ Coffee Break |
| 10:45 - 11:15 | DeepNLME |
| Neural networks, SciML, UDEs and NeuralODEs | |
| 11:15 - 12:30 | DeepNLME (hands-on) |
| 12:30 - 13:30 | 🍽️ Lunch Break |
| 13:30 - 13:55 | Random effects, fitting NLME, and Generative AI |
| 13:55 - 14:40 | DeepNLME with Complex Covariates |
| 14:40 - 15:00 | NLME and Generative AI |
| 15:00 - 15:30 | Embeddings |
| 15:30 - 15:45 | ☕ Coffee Break |
| 15:45 - 16:15 | Epidemiology Demo |
| 16:15 - 17:00 | Discussions and Conclusions |
Machine learning
Scientific modelling
Typical values \[ tvKa, \; tvCL, \; tvVc, \; Ω, \; σ \]
Covariates \[ Age, \; Weight \]
Random effects \[ η \sim MvNormal(Ω) \]
Individual parameters \[\begin{align*} Ka_i &= tvKa \cdot e^{η_{i,1}} \\ CL_i &= tvCL \cdot e^{η_{i,2}} \\ Vc_i &= tvVc \cdot e^{η_{i,3}} \end{align*}\]
Dynamics \[ \begin{align*} \frac{dDepot(t)}{dt} =& - Ka \cdot Depot(t) \\ \frac{dCentral(t)}{dt} =& Ka \cdot Depot(t) - \frac{CL}{Vc} \cdot Central(t) \end{align*} \]
Error model \[ dv(t) \sim Normal\left(\frac{Central(t)}{Vc}, \frac{Central(t)}{Vc} \cdot σ\right) \]
Next up: Hands-on NLME modeling with Pumas